Combining Secret Sharing and Garbled Circuits for Efficient Private IEEE 754 Floating-Point Computations
نویسندگان
چکیده
Two of the major branches in secure multi-party computation research are secret sharing and garbled circuits. This work succeeds in combining these to enable seamlessly switching to the technique more efficient for the required functionality. As an example, we add garbled circuits based IEEE 754 floating-point numbers to a secret sharing environment achieving very high efficiency and the first, to our knowledge, fully IEEE 754 compliant secure floating-point imple-
منابع مشابه
Secure Multi-party Computation Protocols from a High-Level Programming Language
Secure multi-party computation (SMC) enables privacy-preserving computations on data originating from a number of parties. In today’s digital world, data privacy is increasingly more difficult to provide. With SMC methods like secret sharing and Yao’s garbled circuits, it is possible to build privacypreserving computational protocols that do not leak confidential inputs to other parties. The ad...
متن کاملFPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations
In this project we explore the capability and flexibility of FPGA solutions in a sense to accelerate scientific computing applications which require very high precision arithmetic, based on IEEE 754 standard 128-bit floating-point number representations. Field Programmable Gate Arrays (FPGA) is increasingly being used to design high end computationally intense microprocessors capable of handlin...
متن کاملComparison of pipelined IEEE-754 standard floating point adder with unpipelined adder
Many Digital Signal Processing (DSP) algorithms use floating-point arithmetic, which requires millions of calculations per second to be performed. For such stringent requirements, design of fast, precise and efficient circuits is the goal of every VLSI designer. This paper presents a comparison of pipelined floating-point adder complaint with IEEE 754 format with an unpipelined adder also compl...
متن کاملLow Cost Constant Round MPC Combining BMR and Oblivious Transfer
In this work, we present two new universally composable, actively secure, constant round multi-party protocols for generating BMR garbled circuits with free-XOR and reduced costs. 1. Our first protocol takes a generic approach using any secret-sharing based MPC protocol for binary circuits, and a correlated oblivious transfer functionality. 2. Our specialized protocol uses secret-sharing based ...
متن کاملChameleon: A Hybrid Secure Computation Framework for Machine Learning Applications
We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs. Chameleon combines the best aspects of generic SFE protocols with the ones that are based upon additive secret sharing. In particular, the framework performs linear operations in the ring Z2l using a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014